<label id="jgr5k"></label>
    <legend id="jgr5k"><track id="jgr5k"></track></legend>

    <sub id="jgr5k"></sub>
  1. <u id="jgr5k"></u>
      久草国产视频,91资源总站,在线免费看AV,丁香婷婷社区,久久精品99久久久久久久久,色天使av,无码探花,香蕉av在线
      您正在使用IE低版瀏覽器,為了您的雷峰網賬號安全和更好的產品體驗,強烈建議使用更快更安全的瀏覽器
      此為臨時鏈接,僅用于文章預覽,將在時失效
      生物醫藥 正文
      發私信給喬燕薇
      發送

      0

      三十年資深藥企人Derek Lowe抨擊AlphaFold:媒體夸大,靠結構預測做藥「純屬自嗨」

      本文作者: 喬燕薇 2022-08-15 15:35
      導語:AlphaFold不完美,就看你對它有多大期待

      DeepMind近日公布了AlphaFold的最新進展:已預測出超過100萬個物種的2.14億個蛋白質結構,幾乎涵蓋了地球上所有已知蛋白質,再次刷新了我們對它的期待。

      AlphaFold 2橫空出世時的熱烈場景重現,再次在國內外的社交媒體上引發熱議。但作為“圈內人”的生命科學領域研究者們,對AlphaFold此次公布的成果卻褒貶不一。

      在此前雷峰網《醫健AI掘金志》發布的文章《預測2.14億個蛋白質結構!AlphaFold 新成果再次引爆生命科學界,業內專家卻褒貶不一》中,潘毅、周耀旗、許東等幾位生物信息學領域的學者曾表示:AlphaFold蛋白質結構數據庫此次更新的海量數據中存在著部分結果結構不穩定、不能應用于研究中等問題。

      加拿大蒙特利爾大學MILA實驗室唐建教授也向醫健AI掘金志表示,AlphaFold預測出的蛋白質對藥物研發的影響有限。

      近期,美國一位制藥行業的資深專家Derek Lowe博士發文,對外界尤其是媒體熱捧的AlphaFold進行了一番吐槽。

      Derek Lowe博士畢業于杜克大學,在大型制藥公司工作了三十余年,從事治療精神分裂癥、阿爾茨海默氏癥、糖尿病、骨質疏松癥和其他疾病的藥物發現項目。

      三十年資深藥企人Derek Lowe抨擊AlphaFold:媒體夸大,靠結構預測做藥「純屬自嗨」

      Derek Lowe

      上周,Derek Lowe在英國皇家化學學會(Royal Society of Chemistry)的網站上發布了一篇文章。

      他旗幟鮮明地指出:AlphaFold不會帶來藥物研發領域的革新。

      以下為Derek Lowe的文章,雷峰網(公眾號:雷峰網)做了不改變原意的整理。

      長期以來,蛋白質結構預測一直被認為是計算生物學中最困難的問題之一。

      但是在過去的一兩年中,AlphaFold在這方面的工作上取得了顯著的進步,預測出絕大部分人體蛋白質的組織結構。

      如果放在十年前,這樣的成果就像科幻故事一樣。

      三十年資深藥企人Derek Lowe抨擊AlphaFold:媒體夸大,靠結構預測做藥「純屬自嗨」

      我并不想否認AlphaFold取得的成果,但是一些新聞報道錯誤地理解了AlphaFold這一成果的意義。

      我們并沒有在理解“蛋白質為什么會這樣折疊”方面取得巨大飛躍。

      蛋白質結構通常情況下以線圈、環或片狀的形態存在,但為什么不繼續深入其中進行研究?

      如果只在目前的層面上進行研究,將無法發現許多隱秘的答案。

      我們早就擁有成千上萬的新蛋白質結構預測結果,絕大部分是正確的。而且,盡管有一些例外,它們似乎確實大部分是正確的。

      AlphaFold的算法在面對無序的蛋白質區域時會無法正常工作,AlphaFold的整個計算技術都建立在尋找已知結構的類比上,在沒有可比較結構的情況下,AlphaFold也無計可施。

      一部分無序的蛋白質在各種蛋白質的影響下能夠進行有序排列,但也有一部分蛋白質在任何條件下都從未出現過有序的結構。

      當蛋白質無法形成有序結構的時候,就超出了AlphaFold的計算能力。

      三十年資深藥企人Derek Lowe抨擊AlphaFold:媒體夸大,靠結構預測做藥「純屬自嗨」

      AlphaFold提供了其結構預測的置信度。深藍色結構的置信度更高,而黃色和橙色結構的置信度較低

      需要強調的是,通過AlphaFold,我們得到的是蛋白質結構的預測,而非真正的蛋白質結構。

      AlphaFold是很實用的蛋白質預測方法,但通過X射線、核磁共振或冷凍電鏡等方式獲取蛋白質的實際數據,才是確定其準確性的唯一方法。

      但由于構象的靈活性,即使是實際數據也無法完全代表其準確性。

      這正是媒體報道中夸大AlphaFold蛋白質結構數據庫對藥物研發影響的地方。

      在小分子配體的存在下,蛋白質結構會發生變化和滑動,有時細微有時劇烈,但AlphaFold還無法預測這些變化。

      也許最終能夠找到這些問題的算法解決方案,但到目前為止,還沒有足夠多能夠與小分子配體結合蛋白結構。我們需要的數量非常多。

      有大約20種不同的蛋白質側鏈需要考慮,但小分子結構的數量如此巨大,相比之下幾乎是無限的。

      還有一點,聽起來很刺耳(盡管這是真的):在藥物研發的過程中,對蛋白質結構的了解,鮮少影響研發進度。

      因為研究者們通常在使用純蛋白或活細胞進行檢測的基礎上運行項目。檢測數據則代表著化合物是否符合研究者的要求,以及是否隨著新化合物制造而表現更好。

      蛋白質的結構可能會對研究者們下一步制造什么化合物有所啟發,但也可能沒有任何幫助。

      歸根結底,來自真實生物系統的真實數字才是最重要的。

      隨著藥物研發項目的進行,這些數字涵蓋了藥代動力學、新陳代謝和毒理學的檢測,這些都無法真正從蛋白質結構水平上處理。

      激流之后往往才是最終的瀑布。

      新藥在最后的臨床環節失敗,往往是因為我們選擇了錯誤的靶點或其他難以預料的原因。

      而蛋白質結構預測對減輕這兩種風險都無濟于事,這就是藥物研發的臨床失敗率高達85%的原因。

      蛋白質結構預測的確是一個非常棘手的問題,但藥物研發中面臨的風險明顯難度更甚。

      Derek Lowe這篇文章發布后,也引發了兩派讀者的討論。

      支持他的讀者認為,在研究中的確應該考慮到柔性蛋白質的影響,因為構象狀態的變化需要逐案理解。蛋白質-蛋白質和蛋白質-核酸相互作用對了解該系統也很重要。結構本身無法解決所有問題,在取代實驗數據之前,人工智能還有一段路要走。

      也有讀者不同意Derek Lowe的觀點,認為“良好的結構預測將大大加快獲取經驗數據集的過程。”

      一位讀者表示,“基于結構的設計將是一個限制因素——在一個難以獲得結構的環境中。在一個有 AlphaFold的世界中,情況不再如此。此外,可以再次運行AlphaFold,將一個小分子放入并重新折疊它周圍的蛋白質。20年前,在我攻讀博士學位期間,我們曾經使用sybyl 和autodock來做同樣的事情——坦率地說,這些軟件工具完全是垃圾。傳統的藥物設計就像盲人拄著拐杖一樣顫顫巍巍,通過基于結構的設計,我們現在可以看到。它(AlphaFold)以前不是藥物設計的重要組成部分,這一事實與未來如何發現新藥無關。”

      有讀者認為,基于結構的藥物設計活動大大有助于降低失敗率。在AlphaFold缺乏實驗結構的情況下與分子動力學模擬等其他計算方法相結合,遠比傳統方法要好得多。

      不論國內還是國外,學者們對AlphaFold的評價均是褒貶不一,對其在藥物研發中將產生的影響看法也不盡相同。

      Derek Lowe的這篇文章,代表的是主流或者傳統藥企技術專家,面對新技術時一種“本能性”的抵觸。

      這種現象,和醫學影像AI出現時,醫生對AI的吐槽并無區別,本質上是兩種專業背景的碰撞和對抗。但是,現在的放射科醫生也逐漸接受了AI幫他們找肺結節。

      得到這個問題的答案也很簡單,從什么角度對AlphaFold所代表的深度學習技術進行價值評估?

      AlphaFold能否為藥物研發領域帶來革新性的變化,你會站在哪一邊?

      相關文章:

      預測2.14億個蛋白質結構!AlphaFold 新成果再次引爆生命科學界,業內專家卻褒貶不一

      雷峰網原創文章,未經授權禁止轉載。詳情見轉載須知

      分享:
      相關文章

      主筆

      關注醫療科技領域。微信號:qiaoyw186
      當月熱門文章
      最新文章
      請填寫申請人資料
      姓名
      電話
      郵箱
      微信號
      作品鏈接
      個人簡介
      為了您的賬戶安全,請驗證郵箱
      您的郵箱還未驗證,完成可獲20積分喲!
      請驗證您的郵箱
      立即驗證
      完善賬號信息
      您的賬號已經綁定,現在您可以設置密碼以方便用郵箱登錄
      立即設置 以后再說
      主站蜘蛛池模板: 毛多水多高潮高清视频| 国产成人精品午夜2022| 国产精自产拍久久久久久蜜| 久久一本日韩精品中文字幕屁孩| 色综合久久蜜芽国产精品| 亚洲AV电影冈| 成人性生交片无码免费看| 久久一本人碰碰人碰| 国产成人自拍小视频在线| 真人祼交二十三式视频| 宜黄县| 亚洲精品一区国产| 丰满少妇猛烈进入| 粗长挺进新婚人妻小怡| 亚洲成人黄色电影| 色吊丝2277sds中文字幕| 亚洲中文字幕无码久久2017| 五月丁香六月| 少妇性l交大片| 6080啪啪| 国产亚洲成人综合| 国产精品va在线观看无码不卡| 亚洲中文字幕av一区| 亚洲九九九| 中国少妇xxxx做受| 日本体内she精高潮| 亚洲欧美日韩中文v在线| 婷婷五月综合激情| 日日干日日撸| 伊人久久大香线蕉综合影院首页| 欧美顶级metart祼体全部自慰| 人妻一卡二卡| 老鸭窝成人| 国产精品欧美亚洲韩国日本久久| 久久99日韩国产精品久久99| 欧美日韩人妻精品一区二区三区| 九九精品99久久久香蕉| 亚洲天堂免费| 中文字幕熟妇人妻在线视频| 婺源县| 欧美精品人人做人人爱视频|