<label id="jgr5k"></label>
    <legend id="jgr5k"><track id="jgr5k"></track></legend>

    <sub id="jgr5k"></sub>
  1. <u id="jgr5k"></u>
      久草国产视频,91资源总站,在线免费看AV,丁香婷婷社区,久久精品99久久久久久久久,色天使av,无码探花,香蕉av在线
      您正在使用IE低版瀏覽器,為了您的雷峰網賬號安全和更好的產品體驗,強烈建議使用更快更安全的瀏覽器
      此為臨時鏈接,僅用于文章預覽,將在時失效
      生物醫藥 正文
      發私信給李揚霞
      發送

      0

      一個大腦神經元相當于5到8層人工神經網絡?生物神經元計算復雜度可能遠遠不止于此

      本文作者: 李揚霞 2021-09-03 18:06
      導語:計算神經科學家通過訓練人工神經網絡來模仿生物神經元,提供了一種探討單個腦細胞復雜性的新方法。

      一個大腦神經元相當于5到8層人工神經網絡?生物神經元計算復雜度可能遠遠不止于此

      雖然我們糊狀的大腦似乎與計算機處理器中的芯片大相徑庭,但科學家對兩者的比較已經有很長的歷史。正如阿蘭·圖靈在1952年所說:“我們對大腦像冷粥一樣的稠度不感興趣?!币簿褪钦f,媒介并不重要,重要的是計算能力。

      如今,最強大的人工智能系統使用基于深度學習的機器學習方法,該算法通過調整大量的數據隱藏層相互連接的節點來擬合數據,這些節點形成的網絡被稱為深度神經網絡。顧名思義,深度神經網絡的靈感來自于大腦中真實的神經網絡,這些深度神經網絡的節點以真實的神經元為模型。根據20世紀50年代神經科學家對神經元的了解,當時一種有影響力的神經元模型被稱為感知器,從那時起,我們對單個神經元計算復雜性的理解逐漸加深,人們了解到生物神經元比人工神經元更復雜,但是復雜的程度是多少?不得而知。

      一個生物神經元可以和5到8層人工神經網絡相匹敵

      為了找到答案,耶路撒冷希伯來大學的David Beniaguev, Idan Segev和Michael London訓練了一個人工深度神經網絡來模擬生物神經元的計算。該研究表明,“一個深度神經網絡需要5到8層相互連接的人工神經元來才能表示單個生物神經元的復雜性?!?/span>

      Beniaguev也沒有預料到這種復雜性,“我原以為它會更簡單,更小。”Beniaguev如是說。他原來預計三到四層就足以捕獲單元內執行的計算。

      在谷歌旗下的 AI 公司 DeepMind 設計決策算法的 Timothy Lillicrap 表示:“新結果表明,可能有必要重新思考,以前將大腦中的神經元與機器學習背景下的神經元進行不精確的比較的舊傳統 。”,他認為“這篇論文確實有助于人們更仔細地思考這個問題,并搞清楚我們可以在多大程度上進行類比?!?/span>

      人工神經元和真實神經元之間最基本的相似之處,在于它們處理輸入的信息的方式。這兩種神經元都接收輸入的信號,并根據這些信息決定是否將自己的信號發送給其他神經元。人造神經元是依靠簡單的計算來做出決定,但數十年的研究表明,生物神經元的這個過程相對來說更加復雜。

      計算神經科學家使用輸入-輸出函數,模擬生物神經元的長樹枝(樹突)接收到的輸入的信息與神經元決定發送信號之間的關系。

      這項新研究的作者使用一個人工深度神經網絡模仿這個函數,以確定關系的復雜程度。他們首先對老鼠的大腦皮層中的神經元的輸入輸出功能進行了大規模模擬,這種神經元的頂部和底部都有不同的樹突分支,被稱為錐體神經元。然后,他們將模擬結果輸入到一個深度神經網絡中,該神經網絡每層最多有256個人工神經元,他們不斷增加層數,直到在模擬神經元的輸入和輸出之間達到毫秒級99%的準確率。

      最后,深度神經網絡成功地預測了大腦神經元的輸入-輸出函數的行為,結果表明:深度神經網絡至少有5層相互連接的人工“神經元”,但不超過8層。在大多數網絡中,一個生物神經元就相當于大約 1000 個人工神經元。

      一個大腦神經元相當于5到8層人工神經網絡?生物神經元計算復雜度可能遠遠不止于此

      神經科學家們現在知道,單個神經元的計算復雜性,比如左邊的錐體神經元,依賴于樹突狀的分支,這些分支會受到傳入信號的轟擊。在神經元決定是否發送自己的信號“尖峰”之前,會導致局部電壓的變化,以神經元的顏色變化來表示,紅色表示高電壓,藍色表示低電壓。這個“尖峰”出現了三次,如圖中右側的各分支的軌跡所示,這里的顏色代表了樹突從上(紅色)到下(藍色)的位置。

      ——David Beniaguev

      貝勒醫學院(Baylor College of Medicine)的計算神經科學家安德烈亞斯·托利亞斯(Andreas Tolias)說:“(這個結果)為生物神經元和人工神經元之間搭起了橋梁?!?/span>

      這一研究的其中一個作者London對人們提出了警告,他認為,“人工神經網絡中有多少層和網絡的復雜性之間的關系并不明顯,不是直接的對應。”因此,我們不能確切地說,從四層增加到五層會增加多少復雜性。我們也不能說1000 個人工神經元就意味著生物神經元的復雜度恰好是人工神經元的 1000 倍。說不定,我們可以在每一層中使用成倍的人工神經元,最后能形成只有一層的深度神經網絡來擬合一個生物神經元。當然,算法學習可能因此需要更多的數據和學習時間。

      London表示:“我們嘗試了多種不同深度和不同單元的架構,但大多都失敗了?!?/span>

      該研究的作者們分享了他們的代碼,以鼓勵其他人找到一個層次更少的解決方案。但是結果表明,找到一個能以99%的準確率模擬生物神經元的深層神經網絡是很難的。因此,這些作者們相信,他們得出的結果確實為進一步的研究提供了有意義的比較。

      Lillicrap認為,這一研究結果對于將圖像分類網絡與大腦聯系起來,或許可以提供一種新方法。圖像分類網絡通常需要 50 層以上,如果每個生物神經元都近似于一個五層人工神經網絡,那么一個有50層的圖像分類網絡就相當于一個生物網絡中的10個真實神經元。

      這一研究的作者還希望他們得出的研究結果能夠被用于改進 AI 領域目前最先進的深度網絡架構。

      Segev指出,“我們建議,可以嘗試用一個代表生物神經元的單元來替代深度神經網絡中的簡單單元,使其更接近大腦的工作方式?!痹谶@種替代方案中,人工智能研究人員和工程師可以插入一個五層深度網絡作為“迷你網絡”,取代每一個人工神經元。

      有質疑也有肯定

      但有些人懷疑這一研究是否真的對人工智能有益。

      冷泉港實驗室(Cold Spring Harbor Laboratory)的神經學家安東尼·扎多爾(Anthony Zador)說,“我認為,在這種對比中是否存在實際的計算優勢,還是一個懸而未決的問題?!薄暗窃撗芯繛闄z驗這一點奠定了基礎?!?/span>

      除了人工智能的應用之外,這篇新的論文也加深了人們對樹突樹和單個生物神經元強大計算能力的共識。早在2003年,三位神經科學家就表明,金字塔神經元的樹突樹可以通過將其建模為兩層人工神經網絡來進行復雜的模擬計算。在這篇新論文中,作者研究了金字塔神經元的哪些特征(結構)激發了5到8層深度神經網絡的更大復雜性。他們得出的結論是:秘密來自于樹突,以及樹突表面接收化學信使的一種特定受體——這一發現與該領域之前的研究結果一致。

      一些人認為,這一結果意味著神經科學家應該把對單個生物神經元的研究放在更重要的位置。

      賓夕法尼亞大學(University of Pennsylvania)的計算神經學家康拉德·科爾丁(Konrad Kording)說:“這篇論文使得我們對樹突和單個神經元的思考變得比以前重要得多?!?/span>

      還有Lillicrap和Zador,他們認為關注一個回路中的神經元,對于學習大腦如何使用單個神經元的計算復雜性同樣重要。

      無論如何,人工神經網絡的研究可能會提供對生物神經元以及大腦奧秘的新見解。

      倫敦大學學院(University College London)的計算神經科學家格蕾絲·林賽(Grace Lindsay)說:“從層次、深度和寬度的角度思考,這項工作讓我們對計算的復雜性有了直觀的認識?!?/span>

      然而, Lindsay 也警告說,這項新研究仍然只是在對模型進行比較。 不幸的是,目前神經科學家不可能記錄真實神經元的完整輸入-輸出功能,所以可能有更多生物神經元模型沒有捕捉到的東西。 換句話說,真正的神經元可能更加復雜。

      London表示:“我們不確定,5到8層是否真的是最終的極限。”

      參考文章:https://www.quantamagazine.org/how-computationally-complex-is-a-single-neuron-20210902/

      雷鋒網雷鋒網雷鋒網

      雷峰網原創文章,未經授權禁止轉載。詳情見轉載須知。

      分享:
      相關文章

      編輯

      “聚焦安全領域,關注數據安全、隱私計算的等互聯網熱點 ”VX聯系:Dec9102
      當月熱門文章
      最新文章
      請填寫申請人資料
      姓名
      電話
      郵箱
      微信號
      作品鏈接
      個人簡介
      為了您的賬戶安全,請驗證郵箱
      您的郵箱還未驗證,完成可獲20積分喲!
      請驗證您的郵箱
      立即驗證
      完善賬號信息
      您的賬號已經綁定,現在您可以設置密碼以方便用郵箱登錄
      立即設置 以后再說
      主站蜘蛛池模板: 超碰人妻在线| 欧美猛少妇色xxxxx| 好男人社区www在线观看| 熟女在线国产| 国产午夜福利大片免费看| 三叶草欧洲码在线| 天堂av色综合久久天堂| 人成午夜免费视频在线观看| 91资源在线| 欧美性受xxxx白人性爽| 老色鬼在线精品视频在线观看| 在线免费播放av观看| 99re6在线视频精品免费| 亚洲天堂中文字幕| 日韩AV无遮挡污污在线播放| 狠狠噜天天噜日日噜| 岛国熟女一区二区三区| 久久国产精品无码网站| 丝袜精品字幕| 99r精品| 免费看国产精品3a黄的视频| 亚洲伊人成综合网2222| 日韩精品亚洲精品第一页| 国产成人精品一区二区不卡| 精品人妻伦九区久久aaa片| 九九热精品在线视频观看| 一一本无道中文字幕| 国产精品久久欧美久久一区| 377P欧洲日本亚洲大胆 | 亚洲一区精品一区在线观看| 野花香电视剧免费观看全集高清播放 | 国产精品国产高清国产av| 人妻无码久久一区二区三区免费 | 亚洲?日韩?中文?无码?制服| 亚洲中文字幕人妻系列| 国产午夜无码福利在线看网站 | 成人性影院| 中国护士18xxxxhd| 无套內谢波多野结衣| 日韩欧美精品有码在线观看| 精品国产亚洲一区二区三区|