<label id="jgr5k"></label>
    <legend id="jgr5k"><track id="jgr5k"></track></legend>

    <sub id="jgr5k"></sub>
  1. <u id="jgr5k"></u>
      久草国产视频,91资源总站,在线免费看AV,丁香婷婷社区,久久精品99久久久久久久久,色天使av,无码探花,香蕉av在线
      您正在使用IE低版瀏覽器,為了您的雷峰網賬號安全和更好的產品體驗,強烈建議使用更快更安全的瀏覽器
      此為臨時鏈接,僅用于文章預覽,將在時失效
      業界 正文
      發私信給貝爽
      發送

      0

      只看手勢動作,就能完美復現音樂,MIT聯合沃森實驗室團隊推出最新AI,多種高難度樂器信手拈來!

      本文作者: 貝爽 2020-07-24 18:28
      導語:不會樂器也可以玩的很嗨

      會玩樂器的人在生活中簡直自帶光環!

      不過,學會一門樂器也真的很難,多少人陷入過從入門到放棄的死循環。

      但是,不會玩樂器,就真的不能演奏出好聽的音樂了嗎?

      最近,麻省理工(MIT)聯合沃森人工智能實驗室(MIT-IBM Watson AI Lab)共同開發出了一款AI模型Foley Music,它可以根據演奏手勢完美還原樂曲原聲!

      只看手勢動作,就能完美復現音樂,MIT聯合沃森實驗室團隊推出最新AI,多種高難度樂器信手拈來!

      而且還是不分樂器的那種,小提琴、鋼琴、尤克里里、吉他,統統都可以。

      只看手勢動作,就能完美復現音樂,MIT聯合沃森實驗室團隊推出最新AI,多種高難度樂器信手拈來!

      只要拿起樂器,就是一場專業演奏會!如果喜歡不同音調,還可以對音樂風格進行編輯,A調、F調、G調均可。

      只看手勢動作,就能完美復現音樂,MIT聯合沃森實驗室團隊推出最新AI,多種高難度樂器信手拈來!

      這項名為《Foley Music:Learning to Generate Music from Videos》的技術論文已被ECCV 2020收錄。

      接下來,我們看看AI模型是如何還原音樂的?

      會玩多種樂器的Foley Music

      如同為一段舞蹈配樂需要了解肢體動作、舞蹈風格一樣,為樂器演奏者配樂,同樣需要知道其手勢、動作以及所用樂器。

      如果給定一段演奏視頻,AI會自動鎖定目標對象的身體關鍵點(Body Keypoints),以及演奏的樂器和聲音。

      只看手勢動作,就能完美復現音樂,MIT聯合沃森實驗室團隊推出最新AI,多種高難度樂器信手拈來!

      身體關鍵點:由AI系統中的視覺感知模塊(Visual Perception Model)來完成。它會通過身體姿勢和手勢的兩項指標來反饋。一般身體會提取25個關2D點,手指提起21個2D點。

      樂器聲音提取:采用音頻表征模塊(Audio Representation Model),該模塊研究人員提出了一種樂器數字化接口(Musical Instrument Digital Interface,簡稱MIDI)的音頻表征形式。它是Foley Music區別于其他模型的關鍵。

      研究人員介紹,對于一個6秒中的演奏視頻,通常會生成大約500個MIDI事件,這些MIDI事件可以輕松導入到標準音樂合成器以生成音樂波形。

      在完成信息提取和處理后,接下來,視-聽模塊(Visual-Audio Model)將整合所有信息并轉化,生成最終相匹配的音樂。

      我們先來看一下它完整架構圖:主要由視覺編碼,MIDI解碼和MIDI波形圖輸出三個部分構成。

      只看手勢動作,就能完美復現音樂,MIT聯合沃森實驗室團隊推出最新AI,多種高難度樂器信手拈來!

      視覺編碼:將視覺信息進行編碼化處理,并傳遞給轉換器MIDI解碼器。從視頻幀中提取關鍵坐標點,使用GCN(Graph-CNN)捕獲人體動態隨時間變化產生的潛在表示。

      MIDI解碼器:通過Graph-Transfomers完成人體姿態特征和MIDI事件之間的相關性進行建模。Transfomers是基于編解碼器的自回歸生成模型,主要用于機器翻譯。在這里,它可以根據人體特征準確的預測MIDI事件的序列。

      MIDI輸出:使用標準音頻合成器將MIDI事件轉換為最終的波形。

      實驗結果

      研究人員證實Foley Music遠優于現有其他模型。在對比試驗中,他們采用了三種數據集對Foley Music進行了訓練,并選擇了9中樂器,與其它GAN-based、SampleRNN和WaveNet三種模型進行了對比評估。

      其中,數據集分別為AtinPiano、MUSIC及URMP,涵蓋了超過11個類別的大約1000個高質量的音樂演奏視頻。樂器則為風琴,貝斯,巴松管,大提琴,吉他,鋼琴,大號,夏威夷四弦琴和小提琴,其視頻長度均為6秒。以下為定量評估結果:

      可見,Foley Music模型在貝斯(Bass)樂器演奏的預測性能最高達到了72%,而其他模型最高僅為8%。

      只看手勢動作,就能完美復現音樂,MIT聯合沃森實驗室團隊推出最新AI,多種高難度樂器信手拈來!

      另外,從以下四個指標來看,結果更為突出:

      正確性:生成的歌曲與視頻內容之間的相關性。

      噪音:音樂噪音最小。

      同步性:歌曲在時間上與視頻內容最一致。

      只看手勢動作,就能完美復現音樂,MIT聯合沃森實驗室團隊推出最新AI,多種高難度樂器信手拈來!黃色為Foley Music模型,它在各項指標上的性能表現遠遠超過了其他模型,在正確性、噪音和同步性三項指標上最高均超過了0.6,其他最高不足0.4,且9種樂器均是如此。

      另外,研究人員還發現,與其他基準系統相比,MIDI事件有助于改善聲音質量,語義對齊和時間同步。

      說明

      • GAN模型:它以人體特征為輸入,通過鑒別其判定其姿態特征所產生的頻譜圖是真或是假,經過反復訓練后,通過傅立葉逆變換將頻譜圖轉換為音頻波形。

      • SampleRNN:是無條件的端到端的神經音頻生成模型,它相較于WaveNet結構更簡單,在樣本級層面生成語音要更快。

      • WaveNet:是谷歌Deepmind推出一款語音生成模型,在text-to-speech和語音生成方面表現很好。

      另外,該模型的優勢還在于它的可擴展性。MIDI表示是完全可解釋和透明的,因此可以對預測的MIDI序列進行編輯,以生成A\G\F調不同風格音樂。 如果使用波形或者頻譜圖作為音頻表示形式的模型,這個功能是不可實現的。

      只看手勢動作,就能完美復現音樂,MIT聯合沃森實驗室團隊推出最新AI,多種高難度樂器信手拈來!

      最后研究人員在論文中表明,此項研究通過人體關鍵點和MIDI表示很好地建立視覺和音樂信號之間的相關性,實現了音樂風格的可拓展性。為當前研究視頻和音樂聯系拓展出了一種更好的研究路徑。

      以下為Youtobe視頻,一起來感受下AI音樂!
      https://www.youtube.com/watch?v=bo5UzyDB80E

      引用鏈接:(雷鋒網雷鋒網雷鋒網)

      雷峰網原創文章,未經授權禁止轉載。詳情見轉載須知

      分享:
      當月熱門文章
      最新文章
      請填寫申請人資料
      姓名
      電話
      郵箱
      微信號
      作品鏈接
      個人簡介
      為了您的賬戶安全,請驗證郵箱
      您的郵箱還未驗證,完成可獲20積分喲!
      請驗證您的郵箱
      立即驗證
      完善賬號信息
      您的賬號已經綁定,現在您可以設置密碼以方便用郵箱登錄
      立即設置 以后再說
      主站蜘蛛池模板: 一本久道久久综合狠狠爱四虎影视| 18岁日韩内射颜射午夜久久成人| 亚洲乱亚洲乱妇在线| 亚洲熟女综合色一区二区三区| 精品国产v| 精品国产乱| 国产最大成人亚洲精品| 亚洲∧v久久久无码精品| 肉色欧美久久久久久久免费看| 塔河县| 波多野结衣av高清一区二区三区 | 国产精品亚洲А∨天堂免下载| 成在人线av无码免费高潮水老板| 狠狠躁夜夜躁人人爽蜜桃| 超碰福利导航| 中文字幕一卡二卡三卡| av无码不卡| 97精品综合久久| 人妻无码中文字幕| 国产在线一区二区在线视频| 久久婷婷丁香五月综合五| 人人妻人人添人人爽日韩欧美| 国产精品亚洲一区二区三区在线| 西宁市| 欧美亚洲国产精品久久| 婷婷久久久久| 黑森林福利视频导航| 免费av网站| 国产精品77777| 国产精品久久久久久福利69堂| 国内精品久久人妻无码不卡| 把腿张开ji巴cao死你h| 人妻丰满av无码中文字幕| 特级毛片爽www免费版| 野花香在线视频免费观看大全 | 四虎永久免费高清视频| 好湿好紧水多aaaaa片| 久久久久亚洲AV成人无码电影| av手机版天堂网免费观看| 免费无码a片一区二三区| aaaaa级少妇高潮大片免费看|