<label id="jgr5k"></label>
    <legend id="jgr5k"><track id="jgr5k"></track></legend>

    <sub id="jgr5k"></sub>
  1. <u id="jgr5k"></u>
      久草国产视频,91资源总站,在线免费看AV,丁香婷婷社区,久久精品99久久久久久久久,色天使av,无码探花,香蕉av在线
      您正在使用IE低版瀏覽器,為了您的雷峰網賬號安全和更好的產品體驗,強烈建議使用更快更安全的瀏覽器
      此為臨時鏈接,僅用于文章預覽,將在時失效
      人工智能學術 正文
      發私信給我在思考中
      發送

      0

      ICCV2021 |?武漢大學提出“變化無處不在”單時相監督的變化檢測器

      本文作者: 我在思考中 2021-10-13 18:32
      導語:本文提出了單時相監督學習算法(STAR),從而巧妙繞過了傳統的雙時相監督學習中收集成對標記數據成本高的問題。
      ICCV2021 |?武漢大學提出“變化無處不在”單時相監督的變化檢測器
      作者 | 鄭卓 

      ICCV2021 |?武漢大學提出“變化無處不在”單時相監督的變化檢測器

      論文地址: https://arxiv.org/pdf/2108.07002.pdf
      項目頁面: https://zhuozheng.top/changestar/
      代碼: https://github.com/Z-Zheng/ChangeStar

      第一作者主頁:https://zhuozheng.top

      該工作是武漢大學測繪遙感信息工程國家重點實驗室RSIDEA團隊在變化檢測方面的工作,已被ICCV 2021接收。
      針對成對雙時相變化檢測訓練樣本標注耗時、收集困難的問題,提出了一種新穎的弱監督學習算法STAR (Single-Temporal supervised LeARning),其利用非成對單時相遙感影像構造偽雙時相監督信號,以學習變化表征;同時提出了一種變化檢測新架構ChangeStar,其通過核心模塊ChangeMixin,可將任意語義分割模型轉化為變化檢測器,從而復用現有的優秀架構,揭示了語義分割與變化檢測之間的內在聯系。
      實驗表明,單時相監督下的ChangeStar較Baseline取得顯著提升, 在Zero-Shot驗證條件下,與強監督模型精度差距縮小到10%以內;在強監督(雙時相監督)的設定下,基于FarSeg的ChangeStar在LEVIR-CD數據集上實現了state-of-the-art的精度。



      1

      變化無處不在

      我們觀察到,成對標記的位時圖像的重要性在于,變化檢測器需要成對的語義信息來定義對象變化檢測的正負樣本。這些正、負樣本通常是由兩個不同時間的像素在同一地理區域是否具有不同的語義來決定的。位時像素的語義控制著標簽分配,而位置一致性條件(兩個時相的像素應處于相同的地理位置)僅用于保證獨立同分布的訓練和推理。可以想象,如果我們松弛位置一致性條件來定義正負樣本,那么變化是無處不在的,尤其是在未配對的圖像之間。



      2

      方法簡介

      2.1 單時相監督學習算法STAR: Single-Temporal supervised LeARning

      STAR旨在通過帶有語義像素標簽的任意圖像對學習一個可泛化的變化檢測器。為了實現這一點,我們構造了偽雙時相圖像對,松弛了傳統的雙時相監督的變化檢測學習問題,如下式:

      ICCV2021 |?武漢大學提出“變化無處不在”單時相監督的變化檢測器

      其中Xi, Xj為真實雙時相圖像對,對應的Y是其語義像素標簽,F為變化檢測器,ICCV2021 |?武漢大學提出“變化無處不在”單時相監督的變化檢測器為變化檢測器參數。將偽雙時相圖像對(Xt1, ICCV2021 |?武漢大學提出“變化無處不在”單時相監督的變化檢測器Xt1)替換為真實雙時相圖像對,并重新利用邏輯異或運算分配偽雙時相圖像對的變化標簽,從而將原學習問題松弛為下式的僅利用單時相圖像即可完成的學習問題:

      ICCV2021 |?武漢大學提出“變化無處不在”單時相監督的變化檢測器

      偽雙時相圖像對:為了利用單時相圖像提供監督信號,我們提出了一種偽雙時相圖像對構建技術,其通過對一個訓練批次中的圖像Xt1進行隨機排列得到偽第二時相圖像ICCV2021 |?武漢大學提出“變化無處不在”單時相監督的變化檢測器Xt1,并且保證每個偽圖像對中的圖像各不相同。通過觀察可以發現,偽雙時相圖像對的變化標簽可用兩張圖像的語義像素標簽(one-hot為二值標簽)的邏輯異或表示,這樣即可完成偽雙時相圖像對的正負樣本定義。

      ICCV2021 |?武漢大學提出“變化無處不在”單時相監督的變化檢測器

      圖1:模型訓練與推理流程

      2.2 變化檢測新架構ChangeStar = Any Segmentation Model + ChangeMixin

      ChangeStar是一個簡單而統一的網絡,由一個深度語義分割模型和ChangeMixin模塊組成。這種設計的核心思想在于重用現代語義分割架構,因為語義分割和物體變化檢測都是密集的預測任務。為此,我們設計了ChangeMixin模塊,使任何現成的深度語義分割模型能夠檢測物體變化。ChangeMixixin模塊由若干卷積層和一個時序交換模塊組成,其輸入由分割模型計算得到的高分辨率語義特征,輸出雙向的變化檢測圖用于后續的學習與推理。我們在實驗中發現,一個收斂的模型,雙向變化檢測圖相似度極高,因此在推理階段我們選擇其中一個方向的變化檢測圖作為最終預測值。


      3

      主要實驗結果

      這部分展示了所提出方法在不同訓練數據與測試數據下的泛化性實驗結果。對比方法采用基于深度語義分割模型的分類后比較法,作為單時相監督的基線。實驗結果表明,所提出的方法可有效提升單時相監督下的變化檢測性能,具有很好的泛化性能。

      ICCV2021 |?武漢大學提出“變化無處不在”單時相監督的變化檢測器

      同時為了驗證所提出架構的有效性,我們在雙時相監督下訓練了ChangeStar模型的各種變體。實驗結果(表4)表明ChangeStar架構對已有的分割模型具有良好的兼容性,在相同骨干網絡的情況下可取得更加優異的性能。

      ICCV2021 |?武漢大學提出“變化無處不在”單時相監督的變化檢測器

      為了了解單時相、雙時相監督之間的實際差距,我們利用相同模型開展了多組對照實驗,從實驗結果中可以發現,單時相監督作為一種弱監督信號,與雙時相監督這種強監督信號相比仍有一定差距,但差距隨著骨干網絡容量的提升而減小,目前F1精度差距最小可縮小到10%以內。然而本文提出的方法僅僅是在單時相監督上的初步探索,未來還有更大的改進空間,例如使用模型容量更大的transfomer模型作為基礎模型、更大的單時相監督數據、更好的單時相監督學習策略都是值得未來探索的研究話題。

      ICCV2021 |?武漢大學提出“變化無處不在”單時相監督的變化檢測器

      更多的消融實驗與討論可見原文。



      4

      總結

      在這項工作中,我們提出了單時相監督學習算法(STAR),從而巧妙繞過了傳統的雙時相監督學習中收集成對標記數據成本高的問題。STAR提供了一個利用任意圖像對中的物體變化作為監督信號的新視角。為了證明STAR的有效性,我們設計了一個簡單而有效的多任務架構,稱為ChangeStar用于聯合語義分割和變化檢測,它可以通過進一步提出的ChangeMixin模塊重新使用任何深度語義分割架構。

      大量的實驗分析表明,提出的方法可以以較弱監督信息學習一個魯棒的變化檢測器;同樣雙時相監督條件下,超越了目前的state-of-the-art方法。我們希望STAR將作為一個堅實的基線,在未來服務于弱監督變化檢測研究。

      ICCV2021 |?武漢大學提出“變化無處不在”單時相監督的變化檢測器

      雷鋒網


      雷峰網版權文章,未經授權禁止轉載。詳情見轉載須知

      ICCV2021 |?武漢大學提出“變化無處不在”單時相監督的變化檢測器

      分享:
      相關文章
      當月熱門文章
      最新文章
      請填寫申請人資料
      姓名
      電話
      郵箱
      微信號
      作品鏈接
      個人簡介
      為了您的賬戶安全,請驗證郵箱
      您的郵箱還未驗證,完成可獲20積分喲!
      請驗證您的郵箱
      立即驗證
      完善賬號信息
      您的賬號已經綁定,現在您可以設置密碼以方便用郵箱登錄
      立即設置 以后再說
      主站蜘蛛池模板: 91成人视频在线观看| 伊人精品成人久久综合97| 末发育女av片一区二区| 国产精品美女久久久久av福利 | 性九九九九九九| 亚洲精品成人av久久久| 成人AV毛片| 亚洲人成电影网站图片| AV最新高清无码专区| ysl蜜桃色4775| 久久亚洲私人国产精品va | 人人妻人人妻人人片av| 国产丝袜精品在线| 亚州精品成人| 国产成人精品二三区波多野| 免费人成黄页网站在线观看国内| 男女真人国产牲交a做片野外| 国产精品私拍99pans大尺度| 九九九九精品视频在线观看| 超碰人人艹| 国产在线无码制服丝袜无码 | 人人妻人人澡人人爽久久av| 国产AⅤ爽aV久久久久成人小说| 国产l精品国产亚洲区 | 久久婷婷成人综合色综合| 中文字幕少妇人妻| 在线视频一区二区三区不卡| 福利视频一区二区在线| 亚洲最新无码中文字幕久久| 失禁大喷潮在线播放| 国产内射性高湖| 柳江县| 香蕉久久一区二区不卡无毒影院| 色噜噜狠狠色综合无码久久欧美| 欧美三级在线播放| 国产成人欧美一区二区三区在线 | 女人爽到高潮的免费视频| 免费又黄又爽1000禁片| 国产精品国产三级国产a| 狠狠瑟| 亚洲综合久久久|