<label id="jgr5k"></label>
    <legend id="jgr5k"><track id="jgr5k"></track></legend>

    <sub id="jgr5k"></sub>
  1. <u id="jgr5k"></u>
      久草国产视频,91资源总站,在线免费看AV,丁香婷婷社区,久久精品99久久久久久久久,色天使av,无码探花,香蕉av在线
      您正在使用IE低版瀏覽器,為了您的雷峰網賬號安全和更好的產品體驗,強烈建議使用更快更安全的瀏覽器
      此為臨時鏈接,僅用于文章預覽,將在時失效
      專欄 正文
      發私信給知社學術圈
      發送

      1

      納米導線專家的探索:讓一片“綠葉”制造新能源

      本文作者: 知社學術圈 2016-05-13 18:40
      導語:人類是否也能從大自然中摘得一片“綠葉”,為自己制造能源呢?

      雷鋒網按:本文作者維克,來自知社學術圈。

      太陽能對于人類來說早已不是新鮮事物,然而依靠光伏電池板產生的電能并不能滿足我們的所有需求。植物可以通過光合作用提供自身所需的能量,并產生氧氣。然而人類是否也能從大自然中摘得一片“綠葉”,為自己制造能源呢?讓我們看看科學家們在這條路上的奮斗歷程,以及華人學者楊培東的最新成果。恍然間,夢想仿佛照進了現實。

      納米導線專家的探索:讓一片“綠葉”制造新能源

      播撒能量的種子

      植物復雜化學過程中的重要一步就是將水拆分為氫和氧,對于人工光合作用來說,這也是核心問題。由水所生成的氫氣本身就可以作為能源,當然,如果目標產品是更高能量密度的碳氫燃料,比如甲烷和乙醇,那么這只是第一步。

      早在上世紀70年代,日本學者Akira Fujishima和Kenichi Honda就已經在從事這方面工作。在光照條件下,借助二氧化鈦和鉑電極可以催化分解水。隨著1973年石油危機的出現,許多青年學者都投身到了人工光合作用的研究中去。

      納米導線專家的探索:讓一片“綠葉”制造新能源

      人工光合作用簡圖。頂部薄膜可吸收陽光、二氧化碳和水,同時允許氧氣釋放;內部薄膜的特定分子可幫助催化反應并生成燃料;底層將燃料轉移保存。圖片來源加州理工。

      氫氣的希望

      隨著油價的下調和一些地區對可再生能源研究經費的削減,第一股人工光合作用熱潮也很快褪去。不過,堅持下來的學者還是不負眾望的。1998年,美國國家可再生能源實驗室John Turner提出了效率為12.4%的水分解系統。進入21世紀,環境保護和氣候變化越發得到重視,更多的學者也重新回到了綠色能源的研究行列。

      研究的首要目標之一就是尋找新材料以替代昂貴的鉑電極。科學家們曾嘗試了鎳和鉬的硫化物,而加州理工的人工光合作用聯合中心 (JCAP) 在嘗試了幾百種催化劑后,發現了一些性能可匹敵鉑的材料。其中以鈷鉬化合物最佳。而水的分解過程也與早先日本科學家的方法有所不同,光照被電力取代。當然,如果電源來自太陽能電池的話,這個過程才算得上清潔。

      納米導線專家的探索:讓一片“綠葉”制造新能源

      而后,人們不斷地在這條路上努力,澳大利亞莫納什大學學者甚至號稱制出極限效率接近30%的系統。不過,綠色與高效只是其中一方面,成本問題也同樣重要。

      如今,工業上主要依靠甲烷的蒸氣重組法來制備氫氣,這是一種高耗能但低成本的方法。前JCAP負責人Nathan Lewis估計,這種方式制取氫氣的成本大約為每公斤2美元,如果將傳統太陽能電池供電也包含在內,每公斤大概為5到7美元。相比目前的市場價格,新興的制氫方法恐怕還難以競爭。

      當然,氫氣并不是最理想的燃料,因為世界上絕大部分現存的基礎設施都是針對更高密度的能耗供應來建造的,比如汽油和天然氣。清潔制氫的最直接收益大概就是有助于氨肥的可持續生產。不過,人們可能更傾向于把氫氣當作一種輔助性材料。斯坦福大學教授Jens Norskov說:“我覺得氫氣可以作為一種提升其他事情的手段。”

      綠色燃料

      回到那個話題,如果我們以二氧化碳為原料,通過用人工“綠葉”直接制造更高能量密度的燃料,那將是更有效率的。二氧化碳可以直接從發電廠獲取,如果這最終能轉化為一種運輸用燃料或者高價值化學品的話,將是很有意義的。

      JCAP現任負責人Harry Atwater指出,甲醇和乙醇應該是不錯的選擇。目前乙醇已經被用于燃料當中,而用甲醇制取汽油也有很高效的方法。然而,即使是直接生成這些簡單的碳氫化合物,相比分解水來講也要困難許多。

      納米導線專家的探索:讓一片“綠葉”制造新能源

      這其中的化學過程要復雜很多。Norskov介紹,分解一個水分子需要四個電子,而制取簡單的甲烷 (CH4) 則需要牽扯8個電子,且每個都具有不同的能量,這在創造但單碳分子的時候將非常麻煩

      化學家們難以在實驗室中完成的事情,樹葉則信手拈來:制造復雜的糖,生成其他有機分子。神奇的大自然通過3D酶來協調所有成分,高效有序地實現各種中間反應和電子轉移。這些精妙的天然催化劑在能量流轉過程中猶如曇花一現,很快被摧毀,又隨時被植物細胞重建和替換。相比之下,人造催化劑則需要擁有自我修復的能力,或者具有高強度和耐久性。設計擁有如此能力的催化劑則是一項艱難的挑戰。

      或許構建人工葉片的最大挑戰是創造植物那樣精巧的酶。天然蛋白質能夠生產出精密的產品,比如純甲烷。而人工合成的催化劑恐怕很難做到這一點,常常會附帶生成很多預期之外的產物。面對種種難題,科學家們該何去何從?

      另辟蹊徑,讓細菌來工作

      加州伯克利大學的實驗室中擺著一個不起眼的缸子——它正在嘗試制造終極綠色燃料。設備里安置著納米導線電極和細菌群落,其制造清潔能源的公式非常簡單:

      陽光+ 水+ 二氧化碳 = 甲烷

      這就是楊培東魔盒中的內容,他還要憑此制造出乙酸、丁醇等更為復雜的產品。

      今年5月剛剛當選美國科學院院士的國際頂尖納米材料學家楊培東也在從事著“人工光合作用”的研究,然而他選擇了另一條道路,與其艱難地尋找巧奪天工的催化劑,不如拿來主義,借大自然之手創造神奇。

      納米導線專家的探索:讓一片“綠葉”制造新能源

      太陽能到化學能的生物無機轉化途徑, 圖片來源PNAS

      兩年前,楊培東就已經證明了半導體納米導線概念的正確性。相比之下,這種高比表面積的材料可以吸收更多的光,抓住更多的催化劑

      而這次,對于固碳這個難點,他選擇用巴氏甲烷八疊球菌 (Methanosarcina barkeri) 來作為“活體催化劑”。實驗過程中,陽極一如既往地將水拆解為氧氣和氫離子;另一端,氫離子與電子作用生成氫氣并溶于水中,不同的是,半導體納米導線吸收光之后,把電子傳給細菌,后者將其與二氧化碳結合產生甲烷。整個過程效率很高:電解水產生的電子有86%都參與了制造甲烷的反應。冒出水的甲烷氣泡則被收集保存起來。

      納米導線專家的探索:讓一片“綠葉”制造新能源

      實驗裝置 a.陽極池 b.陰極池 c.陽極電源 d.參考電極 e.二氧化碳溶液攪拌 f.連接氣相色譜儀(GC)取樣檢測 g.人工氣體注入/取樣用密封口。圖片來源PNAS

      這是一個具有可行性的途徑,真正做到了直接將太陽能、二氧化碳和水轉化為化學能,而且其轉化效率與真正的植物不相上下。也許談商業化還為時尚早,但回首人類對于細菌的種種利用,楊培東提出的新方法很具有進一步探索的價值。用他的話說:

      我們的最終目標是把太陽能、水、二氧化碳轉化成燃料,我們還要做更大的東西,從一碳做到二、三、四碳。

      納米導線專家的探索:讓一片“綠葉”制造新能源

      楊培東,1971年出生,美籍華裔化學家、材料科學家。2011年湯森路透最優秀百名材料學家首位,2015年獲麥克阿瑟獎獎,2016年5月當選美國科學院院士。現為加州大學伯克利分校化學和材料科學雙聘教授,美國文理科學院院士。他因對半導體納米導線和納米導線光子學研究領域做出的杰出貢獻而獲獎。麥克阿瑟基金會在對楊培東的獲獎評價中說,過去十多年來,從研制出第一個納米導線激光器到現在設計納米導線太陽能電池,楊培東領導的團隊在納米導線光子學研究領域做出多個重大突破。

      參考資料 

      News Feature: Liquid sunlight

      Hybrid bioinorganic approach to solar-to-chemical conversion

      專訪楊培東:開創新領域,才會有原創性發現


      雷峰網原創文章,未經授權禁止轉載。詳情見轉載須知

      納米導線專家的探索:讓一片“綠葉”制造新能源

      分享:
      相關文章

      專欄特約作者

      海歸學者發起的公益學術交流平臺,旨在分享學術信息,整合學術資源,加強學術交流,促進學術進步。
      當月熱門文章
      最新文章
      請填寫申請人資料
      姓名
      電話
      郵箱
      微信號
      作品鏈接
      個人簡介
      為了您的賬戶安全,請驗證郵箱
      您的郵箱還未驗證,完成可獲20積分喲!
      請驗證您的郵箱
      立即驗證
      完善賬號信息
      您的賬號已經綁定,現在您可以設置密碼以方便用郵箱登錄
      立即設置 以后再說
      主站蜘蛛池模板: 无码少妇a片一区二区三区| 风流少妇bbwbbw69视频| 免费日本黄色| 亚洲熟女无码在线| 亚洲无人区一区二区三区| 欧美粗大猛烈老熟妇| 保德县| 亚洲国产欧美在线观看| 日本色多多| 97人妻中文字幕精品| 亚洲精品无码专区| 日韩麻豆国产精品欧美| 孕妇怀孕高潮潮喷视频孕妇 | 天堂VA蜜桃一区二区三区| 噜噜噜亚洲色成人网站| 日本丰满熟妇videossexhd| 亚洲黄色性视频| 一区二区乱子伦在线播放| h片无码| 无码吃奶揉捏奶头高潮视频| 又粗又大网站| 人妻丰满熟妇AV无码区APP| 国产mv在线天堂mv免费观看| 91精品亚洲一区二区三区| 久久久精品久久久久久96 | 中文亚洲字幕| 在线视频这里只有精品| 国产AV无码专区亚洲AV漫画| 影音先锋中文字幕人妻| 亚洲aⅴ无码专区在线观看春色| 久热中文字幕在线精品观| 大肉大捧一进一出好爽视频mba| 精品国产一区二区三区久| 国产精品无码av在线播放| 亚洲天堂免费看片资源| 无码人妻视频一区二区三区 | 99国产精品无码| 尤物一区| 姑娘视频在线观看中国电影| 曾医生17分钟??下载| 国产二级一片内射视频插放|