<label id="jgr5k"></label>
    <legend id="jgr5k"><track id="jgr5k"></track></legend>

    <sub id="jgr5k"></sub>
  1. <u id="jgr5k"></u>
      久草国产视频,91资源总站,在线免费看AV,丁香婷婷社区,久久精品99久久久久久久久,色天使av,无码探花,香蕉av在线
      您正在使用IE低版瀏覽器,為了您的雷峰網賬號安全和更好的產品體驗,強烈建議使用更快更安全的瀏覽器
      此為臨時鏈接,僅用于文章預覽,將在時失效
      AR/VR 正文
      發私信給何忞
      發送

      0

      Facebook 公布全身追蹤技術,不只是臉,整個身體都可實現 AR 效果

      本文作者: 何忞 2018-01-26 16:48
      導語:Facebook研發團隊在博客中透露了其最新的AR全身追蹤技術Mask R-CNNGo。

      Facebook 公布全身追蹤技術,不只是臉,整個身體都可實現 AR 效果

      日前,Facebook 人工智能攝像團隊(AI Camera Team)正在研發各種計算機視覺技術和創新工具,幫助人們更有創意地表達自我。比如,利用實時“風格轉換”技術,你可以制作出“梵高風”的照片和視頻。使用實時面部追蹤技術,你可以實現“一鍵美妝”或者“換頭術”,變化成各種卡通頭像。那么,你有想過“換身術“嗎?Facebook 團隊的 AR 全身追蹤技術或許可以幫你實現。雷鋒網將該團隊目前取得的成果編譯如下。

      為了實現“換身術”,我們需要實時并準確地檢測和追蹤身體動作。這其實是一個非常具有挑戰性的問題,因為身體姿勢和動作變化會很大,識別起來并不容易。一個人可以是坐著的,走著的或是跑動著的;人們可能穿著長外套或者短褲; 有時候人的身體還會被他人或物體阻擋。這些因素都大大增加了身體追蹤系統保持穩健性的難度。

      我們團隊最近開發了一種新的技術,可以準確地檢測到身體姿勢,同時將人體從背景中分割出來。目前,我們的模型還處于研究階段,但這個模型的好處在于,它只有幾兆大小,可以在智能手機上實時運行。不久之后,它還可以衍生出許多新的應用程序,比如創建“全身面具”,使用手勢來控制游戲,或者對人體進行“去識別化(de-identifying)”。

      MaskR-CNN2Go的架構

      我們的人體檢測和分割模型基于一個叫做“Mask R-CNN”的框架。這是一個簡單、靈活且十分通用的對象檢測和分割框架。它可以高效地檢測圖像中的對象,同時預測關鍵點的運行軌跡,并為每個對象生成一個分割掩碼(segmentation mask)。Mask R-CNN 框架研究獲得了 ICCV 2017 年度最佳論文獎。為了在移動設備上實時運行 Mask R-CNN 模型,Facebook 的 Camera,FAIR 和 AML 團隊的研究人員和工程師共同合作,構建了一個高效而輕量的框架模型:“Mask R-CNN2Go”。

      Mask R-CNN2Go 模型由五個主要組件組成:

      1、主干模型包含多個卷積層,并且生成輸入圖像的深層特征表征。

      2、候選區域生成網絡(RPN)以預定的比例和縱橫比(錨點)生成候選對象。OI-Align 層從每個對象的邊界框中提取其特征并將它們發送到探測端。

      3、探測端口包含一組卷積層,池化層和全連接層。它能預測每個候選框中的對象有多大可能是一個人體。探測頭還可以改進邊界框的坐標,將非極大抑制值的相鄰框候選框進行分組,并為圖像中的每個人生成最終的邊界框。

      4、利用每個人的邊界框,我們使用第二個 ROI-Align 層來提取特征,這些特征來自于關鍵點端口和分割端口的輸入。

      5、關鍵點端口與分割端口具有相似的結構。它為身體上的每個預定關鍵點預測出一個掩碼。并使用單一最大掃描來生成最終坐標。

      Facebook 公布全身追蹤技術,不只是臉,整個身體都可實現 AR 效果

      一個針對移動設備而優化的輕量級模型

      與現代 GPU 服務器不同,手機的算力和存儲空間都十分有限。Mask R-CNN 最初的模型是基于 ResNet的,它太大而且太慢,無法在手機上運行。為了解決這個問題,我們為移動設備開發了一個非常優化而高效的模型架構。

      我們使用了幾種方法來減小模型的大小。首先,我們優化了卷積層的數量和每層的寬度,這也是我們在處理中最耗時的部分。為了確保擁有足夠大的感受野,我們使用了包括 1×1,3×3 和 5×5 的內核大小的組合。另外,我們還使用權重剪枝算法來縮減模型。我們的最終模型只有幾兆字節,但是非常精準。

      模塊化設計提高了計算速度

      為了能夠實時運行深度學習算法,我們使用并優化了我們的核心框架: 載有 NNPack 的 Caffe2,SNPE和 Metal。通過使用移動 CPU 和包含 NNPack,SNPE 和 Metal 在內的 GPU 庫,我們能夠顯著提高移動計算的速度。并且,所有這些都是通過模塊化設計完成的,并不需要改變模型的一般定義。因此,我們既可以獲得較小的模型,又可以獲得較快的運行時間,同時避免了潛在的不兼容問題。

      Facebook AI 研發團隊(FAIR)最近發布了 Mask R-CNN 研究平臺(Detectron)。我們開源了 Caffe2 運算符(GenerateProposalsOp,BBoxTransformOp,BoxWithNMSLimit 以及 RoIAlignOp)并提供了必要的模型轉換代碼,供研究社區使用。

      下一步是什么

      開發移動設備的計算機視覺模型是一項艱巨的任務。移動設備模型必須小巧,快速而準確,并且不需要大量內存。我們將繼續探索新的模型架構,力求進一步提升模型效率。我們還將探索更適合移動 GPU 和 DSP 的模型,讓它們更加節省電量和算力。

      via research.fb.com 雷鋒網雷鋒網編譯

      雷峰網原創文章,未經授權禁止轉載。詳情見轉載須知。

      分享:

      編輯

      站在博士路的路口。
      當月熱門文章
      最新文章
      請填寫申請人資料
      姓名
      電話
      郵箱
      微信號
      作品鏈接
      個人簡介
      為了您的賬戶安全,請驗證郵箱
      您的郵箱還未驗證,完成可獲20積分喲!
      請驗證您的郵箱
      立即驗證
      完善賬號信息
      您的賬號已經綁定,現在您可以設置密碼以方便用郵箱登錄
      立即設置 以后再說
      主站蜘蛛池模板: 人人妻人人澡人人爽欧美一区双 | 在线播放亚洲成人av| 18禁国产一区二区三区| 青青草原亚洲| 国产一区二区亚洲精品| 18禁裸体女免费观看| 最新国产精品亚洲| 婷婷五月综合色视频| 欧美超大胆裸体xx视频| 亚洲国产成人精品无码区二本| 强行无套内谢大学生初次| 亚洲精品视频免费| 在线精品自拍亚洲第一区| 乌克兰美女浓毛bbw| 久久精品免费一区二区| 制服丝袜国产精品| 亚洲AV第二区国产精品| 欧美顶级metart祼体全部自慰| 九一AV| 国产乱人伦偷精品视频免| 最美情侣国语版免费高清视频| 国产精品丝袜美女在线观看| 人妻精品一区二区三区视频| 亚洲欧美日韩中文字幕一区二区| 亚洲第一页色| 国产精品三级在线观看无码| 亚洲色婷婷六月亚洲婷婷6月| 国产日产欧产系列| 女人香蕉久久毛毛片精品| 国模在线视频| 免费无码国产欧美久久18| 色在线网站免费观看| 欧美人妻中文| 亚洲成av人片一区二区| 国产中文三级全黄| 亚洲黄色片| 少妇被黑人到高潮喷出白浆| 国产成人夜色高潮福利影视| 97在线视频人妻无码| 国产又粗又猛又黄又爽无遮挡| 91无码人妻精品一区二区蜜桃 |