<label id="jgr5k"></label>
    <legend id="jgr5k"><track id="jgr5k"></track></legend>

    <sub id="jgr5k"></sub>
  1. <u id="jgr5k"></u>
      久草国产视频,91资源总站,在线免费看AV,丁香婷婷社区,久久精品99久久久久久久久,色天使av,无码探花,香蕉av在线
      您正在使用IE低版瀏覽器,為了您的雷峰網賬號安全和更好的產品體驗,強烈建議使用更快更安全的瀏覽器
      此為臨時鏈接,僅用于文章預覽,將在時失效
      人工智能 正文
      發私信給這只萌萌
      發送

      0

      谷歌研究院在化學發力:應用機器學習技術預測分子性質

      本文作者: 這只萌萌 2017-04-18 10:36
      導語:谷歌研究院發表的兩篇論文,推進了機器學習在化學領域的研究發展。

      最近,機器學習在化學領域的應用有很大進展,特別是化學搜索問題,從藥物篩選、電池設計到OLEDs設計,催化劑的發現。 歷史上化學家使用薛定諤方程做數值近似來解決化學檢索問題,如使用密度泛函理論(DFT),然而近似值的計算成本限制了搜索的規模。 

      為了能夠擴大搜索能力,雷鋒網了解到已有幾個研究小組使用DFT生成的訓練數據,創建ML模型來預測化學性質,例如Matthias Rupp等用機器學習模型來預測各種有機分子的原子化能,J?rg Behler 和 Michele Parrinello引入DFT勢能面的一種新的神經網絡表征。在這些工作的基礎之上,谷歌研究院在QM9基準數據集(配有DFT計算的電子,熱力學和振動性質的分子集合)上應用了各種機器學習方法。

      雷鋒網消息,谷歌研究院發布了兩篇論文,介紹了他們在這一領域的研究,研究工作由Google Brain團隊,Google Accelerated Science團隊,DeepMind和巴塞爾大學合作完成。 第一篇論文《Fast machine learning models of electronic and energetic properties consistently reach approximation errors better than DFT accuracy》調查了回歸分子和分子表征的選擇對快速機器學習模型的影響,模型用于構建有機分子的十三個基態電子性質,每個回歸/表征/性質組合的性能通過學習曲線評估,該曲線描繪近似誤差,以此作為訓練集大小的函數。論文在QM9基準數據集上測試了多種機器學習方法,并集中改進最有希望的深層神經網絡模型。

      第二篇論文《Neural Message Passing for Quantum Chemistry》描述了一種稱為消息傳遞神經網絡(MPNN)的模型族,將其抽象地定義為包含很多對圖形對稱性具有不變性的神經網絡模型。研究團隊在MPNN模型族中開發了新變體,性能明顯優于QM9基準測試的所有基準測試方法,另外某些目標的性能改進了近四倍。

      從機器學習的角度來看,分子數據之所以有趣,原因之一是一個分子的自然表征以原子作為邊界的結點和鍵。能夠利用數據中固有對稱性的模型更容易泛化,這很容易理解,卷積神經網絡在圖像識別上之所以成功,一部分原因是模型能夠記住圖像數據中的一些不變性知識,比如把一種圖片中的狗挪到圖片左邊還是一張狗的照片)。 圖形對稱性這一固有特征是機器學習處理圖像數據非常理想的性質,在這領域也有許多有趣的研究,例如Yujia Li等研究了結構化圖片的特征學習技巧,David Duvenaud等應用圖像神經網絡學習分子指紋信息,Steven Kearnes等提出一種機器學習模型用于無向圖的學習。盡管這一領域已有所進展,谷歌研究院希望找到化學(和其他)應用模型的最佳版本,并找出文獻中提到的不同模型之間的聯系。

      谷歌研究院提出的MPNN模型提高了QM9數據集任務(預測所有13種化學性質)的最好性能,在這個特定的數據集上,他們的模型可以準確地預測13種性質中的11個,這樣的預測性能已經足夠準確,能對化學家未來的應用有幫助。另外,此模型比使用DFT模擬要快30萬倍。但是在MPNN模型走向實際應用之前還有很多工作要做。實際上,MPNN模型必須應用于比QM9數據更多樣化的分子集合(例如數目更大,變化更大的重原子集合)。當然,即使有了更真實的數據集,模型的泛化性能還是很差。克服以上兩個挑戰需要解決機器學習研究的核心問題,例如泛化。

      預測分子性質是一個非常重要的問題,它既是先進的機器學習技術的應用場景,也為機器學習帶來了非常有趣的基礎研究課題。最后,分子性質的預測有助于造福人類的新藥物和材料的設計。谷歌科學家們認為傳播研究成果,幫助其他研究者學習機器學習應用都是及其重要的。

      封面圖片來自Chemistry Explained,雷鋒網編譯

      雷峰網版權文章,未經授權禁止轉載。詳情見轉載須知

      谷歌研究院在化學發力:應用機器學習技術預測分子性質

      分享:
      相關文章

      知情人士

      當月熱門文章
      最新文章
      請填寫申請人資料
      姓名
      電話
      郵箱
      微信號
      作品鏈接
      個人簡介
      為了您的賬戶安全,請驗證郵箱
      您的郵箱還未驗證,完成可獲20積分喲!
      請驗證您的郵箱
      立即驗證
      完善賬號信息
      您的賬號已經綁定,現在您可以設置密碼以方便用郵箱登錄
      立即設置 以后再說
      主站蜘蛛池模板: 在线观看日韩av| 精品秘?无码人妻| 久热中文字幕在线精品观| 国产传媒AV| 久久99色综合| 91新视频| 色中色综合一区| 少妇被粗大的猛烈进出动视频| 中文字幕国产精品av| 妇女bbbbb撒尿正面视频| 舞阳县| 天堂在/线中文在线资源 官网| 99在线精品国自产拍不卡| 777精品成人a?v久久| 国产精品日韩av在线播放| 久久久久99精品成人片欧美一区 | 国产猛烈高潮尖叫视频免费| 久久久久久AV| 男女动态无遮挡动态图| 亚洲中文久久久精品无码| 精品视频国产香蕉尹人视频| 成人免费看片又大又黄| 国精产品一区一区三区有限 | 久久一日本道色综合久久| 一个人看的www片| 免费福利视频一区二区三区高清| 99精品国产一区二区| 丰满少妇人妻无码专区| 欧美日韩一区二区综合| 国产69久久精品成人看| 影音先锋AV在线资源| 精品一区二区三区波多野结衣| 一本色道久久88综合日韩精品| 午夜无码人妻A∨大片| 一本色道久久加勒比综合| 最近中文字幕免费mv在线| 国产欧美日韩免费看AⅤ视频| 男人一边吃奶一边做爰免费视频| 国产午夜成人av在线播放| 日韩精品无码一区二区三区| 富婆如狼似虎找黑人老外|