<label id="jgr5k"></label>
    <legend id="jgr5k"><track id="jgr5k"></track></legend>

    <sub id="jgr5k"></sub>
  1. <u id="jgr5k"></u>
      久草国产视频,91资源总站,在线免费看AV,丁香婷婷社区,久久精品99久久久久久久久,色天使av,无码探花,香蕉av在线
      您正在使用IE低版瀏覽器,為了您的雷峰網賬號安全和更好的產品體驗,強烈建議使用更快更安全的瀏覽器
      此為臨時鏈接,僅用于文章預覽,將在時失效
      人工智能學術 正文
      發私信給AI研習社
      發送

      0

      今日 Paper | CausalML;隱式函數;慢動作視頻重建;交叉圖卷積網絡等

      本文作者: AI研習社 2020-03-18 15:08
      導語:為了更好地服務廣大 AI 青年,AI 研習社正式推出全新「論文」版塊。
      今日 Paper | CausalML;隱式函數;慢動作視頻重建;交叉圖卷積網絡等

        目錄

      CausalML:用于因果機器學習的Python包

      用于3D重建和形狀補全的特征空間中的隱式函數

      基于混合成像系統的慢動作視頻重建

      交叉圖卷積網絡(Cross-GCN):使用k順序特征交互來增強圖卷積網絡

      選擇核網絡

        CausalML:用于因果機器學習的Python包

      論文名稱:CausalML: Python Package for Causal Machine Learning

      作者: Huigang Chen*

      發表時間:2020/3/2

      論文鏈接:https://paper.yanxishe.com/review/14227?from=leiphonecolumn_paperreview0318

      推薦原因

      本文主要內容:

      本文提出了一種新的機器學習算法包——CausalML,這是一種采用ython語言編寫而成用于解決因果推理(causalinference)與機器學習(machine learning)任務的算法,并且已經封裝成型,提供了API接口供學習者使用。對于CausalML包的使用用途,作者從三方面進行介紹,分別為 定位優化(Targeting Optimization)、因果影響分析(Causal Impact Analysis)以及模型的個性化(Personalization)。此外作者也對后續的研究提出了自己的觀點。總之,本文適合于剛入機器學習方向的同學學習研究。

      今日 Paper | CausalML;隱式函數;慢動作視頻重建;交叉圖卷積網絡等

        用于3D重建和形狀補全的特征空間中的隱式函數

      論文名稱:Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion

      作者: Julian Chibane /Thiemo Alldieck /Gerard Pons-Moll

      發表時間:2020/3/3

      論文鏈接:https://paper.yanxishe.com/review/13186?from=leiphonecolumn_paperreview0318

      推薦原因

      這篇文章被CVPR2020接收!文章主要考慮從各種各樣的3D輸入來進行3D重建和形狀補全的工作,能夠處理低和高分辨率體素、稀疏和稠密電云、完整或不完整的數據等等。

      作者通過神經網絡從輸入數據提取基于三維張量表達的多尺度特征,并將該張量與嵌入原始形狀的歐式空間進行對齊,然后從張量提取的深層特征進行分類。實驗表明文章提出的模型根據全局和局部形狀結構做出決策,能夠得到更準確的重建結果。文章的方法能夠提供連續的輸出,可以處理多種拓撲,可以從缺失或者稀疏的輸入數據生成完整的形狀,并且可以重建3D人體并保留表面細節。

      今日 Paper | CausalML;隱式函數;慢動作視頻重建;交叉圖卷積網絡等
      今日 Paper | CausalML;隱式函數;慢動作視頻重建;交叉圖卷積網絡等

        基于混合成像系統的慢動作視頻重建

      論文名稱:Deep Slow Motion Video Reconstruction with Hybrid Imaging System

      作者: Avinash Paliwal /Nima Khademi Kalantari

      發表時間:2020/2/27

      論文鏈接:https://paper.yanxishe.com/review/12733?from=leiphonecolumn_paperreview0318

      推薦原因

      慢動作視頻在近些年來變得越來越流行,但以極高的幀率捕獲高分辨率視頻需要專業的高速相機,對于普通消費者或者攝影愛好者比較難實現。文章提出了一種重建高分辨率慢動作視頻的方法。

      當前的慢動作視頻生成方法大多是通過線性插幀來實現,對于運動較小的簡單情況能夠得到不錯的結果,但是對于稍微復雜的情況,結果就變得很差,會得到不自然的結果。文章將兩個視頻流作為輸入來解決這一問題,除了低幀率高分辨率的主視頻,還提供一個高幀率低分辨率的輔助視頻來提供時序信息。作者提出了一個由對齊和外觀估計組成的兩階段深度學習系統,來從混合視頻輸入中重建高分辨率慢動作視頻。作者使用合成的混合視頻數據集訓練了網絡,并搭建了一個簡單的雙攝裝置,來驗證文章方法的表現。

      今日 Paper | CausalML;隱式函數;慢動作視頻重建;交叉圖卷積網絡等
      今日 Paper | CausalML;隱式函數;慢動作視頻重建;交叉圖卷積網絡等

        交叉圖卷積網絡(Cross-GCN):使用k順序特征交互來增強圖卷積網絡

      論文名稱:Cross-GCN: Enhancing Graph Convolutional Network with $k$-Order Feature Interactions

      作者: Fuli Feng /Xiangnan He /Hanwang Zhang /Tat-Seng Chua

      發表時間:2020/3/5

      論文鏈接:https://paper.yanxishe.com/review/13480?from=leiphonecolumn_paperreview0318

      推薦原因

      1 核心問題:

      在過往的研究中,圖卷積網絡(GCN)顯示了強大的表示能力,在推薦系統和相關文檔分類中取得了亮眼的效果。本文主要解決了傳統的圖卷積網絡放棄建模交叉特征的問題。

      2 創新點:

      本文提出了一個交叉特征圖卷積運算符,此運算符提供了一個新的特征轉換模塊,該模塊以任意順序編碼交叉特征,并且具有依據特征維數和順序大小的線性復雜度。接著,在此運算符的基礎上,本文提出了一個新的基于圖學習的方法。

      3 研究意義:

      過往的圖卷積網絡放棄了對圖交叉特征的建模,這影響了圖卷積網絡在交叉特征相對重要的數據集上取得的效果和效率。本文提出的Cross-GCN在交叉特征的建模上具有實用性,特別是在低層上的特征提取上。同時,Cross-GCN在低維稀疏數據集上取得了更大的效果提升。

      今日 Paper | CausalML;隱式函數;慢動作視頻重建;交叉圖卷積網絡等
      今日 Paper | CausalML;隱式函數;慢動作視頻重建;交叉圖卷積網絡等

        選擇核網絡

      論文名稱:Selective Kernel Network

      作者: Xiang Li;Wenhai Wang;Xiaolin Hu;Jian Yang

      發表時間:2019/5/16

      論文鏈接:https://paper.yanxishe.com/review/13537?from=leiphonecolumn_paperreview0318

      推薦原因

      在神經科學界,視皮層神經元的感受野大小受刺激的調節,即對不同刺激,卷積核的大小應該不同,但這在構建CNN時一般在同一層只采用一種卷積核,很少考慮多個卷積核的作用。文中提出了一種在CNN中對卷積核的動態選擇機制,該機制允許每個神經元根據輸入信息的多尺度自適應地調整其感受野(卷積核)的大小。設計了一個稱為選擇性內核單元(SK)的構建塊,其中,多個具有不同內核大小的分支在這些分支中的信息引導下,使用SoftMax進行融合。由多個SK單元組成SKNet,SKNet中的神經元能夠捕獲不同尺度的目標物體。

      今日 Paper | CausalML;隱式函數;慢動作視頻重建;交叉圖卷積網絡等
      今日 Paper | CausalML;隱式函數;慢動作視頻重建;交叉圖卷積網絡等

      今日 Paper | CausalML;隱式函數;慢動作視頻重建;交叉圖卷積網絡等

      雷鋒網雷鋒網雷鋒網

      相關文章:

      今日 Paper | 雙向ConvLSTMU-Net卷積;SAU-Net;立體匹配;深度語義分割等

      雷峰網原創文章,未經授權禁止轉載。詳情見轉載須知

      今日 Paper | CausalML;隱式函數;慢動作視頻重建;交叉圖卷積網絡等

      分享:
      相關文章

      編輯

      聚焦數據科學,連接 AI 開發者。更多精彩內容,請訪問:yanxishe.com
      當月熱門文章
      最新文章
      請填寫申請人資料
      姓名
      電話
      郵箱
      微信號
      作品鏈接
      個人簡介
      為了您的賬戶安全,請驗證郵箱
      您的郵箱還未驗證,完成可獲20積分喲!
      請驗證您的郵箱
      立即驗證
      完善賬號信息
      您的賬號已經綁定,現在您可以設置密碼以方便用郵箱登錄
      立即設置 以后再說
      主站蜘蛛池模板: 国产性狂乱视频| 久久精品成人欧美大片| 亚洲国产资源| 成人精品日韩专区在线观看| 在线观看的网站| 亚洲欧美另类久久久精品| www.欧美精品| 高潮迭起av乳颜射后入| 亚洲а∨天堂久久精品2021| 一个人在线观看免费视频www | 天天爽夜夜爽人人爽一区二区| 亚洲国产欧美不卡在线观看| 毛片亚洲AV无码精品国产午夜| 欧美疯狂xxxx乱大交| 美女黄网站视频免费视频| 天堂在线中文| av一本久道久久综合久久鬼色 | 亚洲欧美日韩国产精品一区二区| 99精品久久毛片a片| 中文字幕无码免费久久| 超碰日韩| 麻豆精品人妻一区二区三区蜜桃| 亚洲精品专区| 亚洲最大福利视频网| 国产一区二区波多野结衣| 婷婷久久香蕉五月综合加勒比| 狠狠躁夜夜躁人人爽天天5| www.亚洲V| 精品人妻潮喷久久久又裸又黄| 中文国产成人精品久久不卡| 欧美精品国产一区二区三区| 亚洲综合天堂一区二区三区| 精品自拍视频| 亚洲精品国产主播一区二区| 国产成人A码男人的天堂国产乱| 日本特级片| 久久波多野结衣| 亚洲欧美在线一区中文字幕| 色综合久久中文综合久久激情 | 波多野结衣网站| 亚洲色成人网站www永久四虎|